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REVIEWS 

Lectures on Fluid Mechanics. By MARVIN SHINBROT. Gordon & Breach, 

This book is, I believe, the first introductory text in English to lay before the reader 
samples both of the traditional, concrete approach to fluid dynamics (familiar to 
readers of this Journal) and of the modern, more abstract theory (whereby the 
exact solution of a rather general problem in viscous flow, say, is first secured as a 
point in an appropriate function space, the members of which may have distinctly 
fewer derivatives than appear in the Navier-Stokes equations). The author’s 
purpose is “ to  introduce the mathematically sophisticated listener to some of 
the problems of the mechanics of an incompressible fluid”, and he assumes 
that  “the reader is familiar with functional analysis, some complex variables, 
and little else”. It turns out, however, that the reader need have only the most 
primitive ideas of functional analysis; what i s  essential for the final chapters is 
a taste for delicate, and occasionally elaborate, inequalities between integrals. 

The book is in two parts. Part I, Setting the scene, is 132 pages long, and begins 
by dipping into statistical mechanics to derive the equations of motion, with 
only a sketch of the continuum viewpoint. This is followed by five chapters on 
potential flow, with perhaps more emphasis on general theorems than is found in 
conventional texts of comparable length, but containing also the usual examples 
of Rankine’s combined vortex (with a free surface) and of the ideal flows past 
sphere, circle and Joukowski aerofoil. Next, there are three chapters on elementary 
aspects of viscous flow : the first derives the stresslrate-of-strain relation and 
the energy equation ; the second gives examples of parallel flows and of the Jeffery- 
Hamel solutions for source flow between inclined planes; and the third is a very 
brief description of the Stokes, Oseen and boundary-layer approximations. 

Part  11, A taste of the modern theory, is 83 pages long and deals with the initial- 
value problem of the Navier-Stokes equations, in which one asks what happens 
to fluid of uniform density and viscosity within a fixed container, when the initial 
velocity field (at time t = 0) is known. I n  the present treatment, the container 
is a bounded domain V in the (real, Euclidean) three-dimensional space R3, with 
a smooth boundary a V on which the velocity is zero for all t 3 0. The preliminary 
chapter 10 introduces some of the mathematical apparatus; the next three 
proceed more or less as follows. The author begins with his own ingenious deriva- 
tion, by means of finite differences with respect to the time variable, of the 
celebrated weak solution which E. Hopf constructed in 1951 by a dazzling appli- 
cation of Galerkin’s method.? (Hopf followed the path opened by Leray in 
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t In other words, by means of approximations 
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to the velocity; here the av are ‘basis’ vector fields, solenoidal and vanishing on the 
boundary aV, and in principle known a priori, while the scalars pk, ,  are found as the 
solutions of k simultaneous ordinary differential equations. 
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1933-4.) For three space dimensions, this weak solution is the only one known to 
exist for all time; but it is not required to have a time derivative even in the 
generalized sense, and may not be unique; as far as is known, the corresponding 
total energy a t  any instant may be less than the initial energy minus that spent 
by dissipation. Next, we learn that, if in some time interval [O,T) this weak 
solution should happen to be just a little smoother than has been proved, then 
it would be unique for such times and would satisfy the energy equation. With 
still better differentiability properties (in fact, when the velocity has in a general- 
ized sense the derivatives appearing in the Navier-Stokes equations), a weak 
solution earns the name strong; and we are now led to a result first proved by 
Kiselev and Ladyzhenskaya, and later sharpened by Kaniel and Shinbrot. This 
shows that, when the initial velocity field is not too rough, a strong solution, 
which is therefore unique, exists for sufficiently small times; alternatively, if the 
initial velocity is sufficiently small, such a solution exists for all time. (Here 
‘sufficiently small’ means ‘pathetically small’ from the practical point of view.) 
The plot thickens further with the description (due to Leray for fluid occupying 
the whole space R3, and to Kaniel and Shinbrot for bounded domains V )  of the 
set of instants t a t  which a weak solution can seriously misbehave itself: this set 
is bounded, is the complement of a union of half-open intervals, and has Lebesgue 
measure zero ! 

The final chapter 14 deals with a reproductive property of the Navier-Stokes 
equations: for any sufficiently small body force, one can find (in a bounded 
domain V )  an initial velocity field that is repeated at a prescribed time t, > 0. 

Prof. Shinbrot has made significant contributions not only to the foregoing 
story, but also to the theory of water waves, to the study of the no-slip boundary 
condition from the viewpoint of kinetic theory with diverse reflexion laws, and 
to various matters of Analysis. Accordingly, he is exceptionally well qualified to 
write a book on both sides of the theory of fluid motion; but his text is marred 
by what I can only imagine to be extreme haste and carelessness in its prepara- 
tion. There is a host of small inaccuracies, ranging from (a) the omission of the 
large factor N ,  representing the number of mass-points, from the definitions of 
density and mean velocity in chapter 1, to ( b )  at least six wrong exponents in the 
mathematical tool-kit of chapter 10. In  addition, the following howlers may 
dismay not only the mathematically sophisticated reader to whom the book is 
specifically addressed. 

(i) In the proof of the transport theorem on p. 9, and repeatedly thereafter, it 
is claimed that certain maps (essentially those from material to spatial 
co-ordinates) are one-to-one merely because their Jacobians are strictly positive 
everywhere. The domains of these maps are specified only by the ambiguous 
phrase “transformations in Rn”. When that domain is a proper subset of Rn 
(a case that we certainly need in applicatians), positivity of the Jacobian is not 
enough. 

(ii) Lemma 2.3.3, p. 39, which asserts sufficient conditions for the existence of 
a (single-valued) velocity potential, is conspicuously false in both statement and 
proof for multiply connected domains, despite remarks immediately before the 
lemma that suggest an awareness of the danger. 
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(iii) On p. 42, the potentials of a point dipole and of the classical flow past a 
sphere are repeatedly and consistently wrong. 

(iv) The Hilbert space L2( V-+ R3), of vector-valued functions defined and 
square-integrable on a (possibly unbounded) domain V in R3, has an orthogonal 
decomposition into (a)  the closure in L2 of smooth solenoidal vector fields that 
vanish on the boundary a V ,  and ( b )  gradients Of of single-valued scalar functions 
(even when V is multiply connected). This decomposition is central to Navier- 
Stokes theory, and is a particular favourite of Prof. Shinbrot, but the proof of it 
here is irreparably wrong at almost the first step: in general, the extension of q5 
that precedes equation (2.1) on p. 141 does not yield a function in what is called 
(gZ(R3))'- here. (The final step of the proof is also false, but that could be repaired 
if the earlier part were correct.) 

so much for actual mistakes; but my complaints do not end there. An excursion 
into statistical mechanics is certainly to the good, but, as the author admits, that 
subject cannot at  present provide a firm and unambiguous foundation for the 
continuum theory, let alone by simple arguments. Such a foundation, necessarily 
depending on strong hypotheses about the map from material points (in an 
arbitrary set) to spatial points, never appears in the book, and a certain loss of 
clarity results. Indeed, this fundamental map is never given a name: whether we 
are in the phase space RBN or in R3, the same letter is used for the generic symbol 
of points and for the function of time and initial positio6 that describes the path 
of a marked point. 

In  Part 11, which seems closer than Part I to the author's heart and mind, 
lemmas and proofs tend to have less direction and edge than one might wish, in 
two respects. First, the standard properties of mollified functions, L p  spaces and 
Sobolev spaces, which are now available in a number of texts, appear in an 
unnatural order and do not always precede the more special, and sometimes 
elaborate, estimates needed for Navier-Stokes problems. Second, key steps are 
not given due prominence relative to routine ones. For example, the cornerstone 
of chapter 12 is a Machiavellian bound for integrals of the form 

when the vector fields u(x,t), etc., are restricted in a certain way. With this 
estimate emphasized as a preliminary lemma (as it is not in the book), and with 
an economical notation for mollified functions, the proofs in chapter 12 can be 
made significantly shorter and more transparent. 

A minor irritant is that the symbol q denotes the position vector in R3, and 
s the velocity vector, throughout the book. After a few days' practice, one learns 
to accept this; but the mere reading of equations becomes a severe strain when, 
within the same equation, different velocity fields are denoted by s1 and s2 
(instead of the usual u and v or u and v) and, at  the same time, inner-product 
brackets ( , ) embrace a thicket of argument brackets ( ), mollified functions 
being written at  full length. 

Despite these criticisms, I am happy to have read, and to own, the book. For 
a relatively short work in which no prior knowledge is assumed, it contains much 
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that is not readily, or so palatably, available elsewhere, and I have learned a great 
deal. The author makes good his promise in the Introduction to point constantly 
to unsolved problems, and his characteristic remark that “this work can be used 
as the beginnings of a sourcebook for problems for Ph.D. theses” is scarcely 
exaggerated. The book is written with a lively style, a highly individual point of 
view, total irreverence towards accepted conventions and beliefs, and a critical 
sense that is often penetrating. Above all, it is never dull; Prof. Shinbrot has 
a remarkable ability to sharpen our curiosity, and to freshen our appetite for the 

L. E. FRAENKEL mathematical problems of fluid mechanics. 

Analytical Methods in Planetary Boundary-Layer Modelling. By R. A. 

If the reader expects from the title of this book to  be able to gain from it a good 
understanding of the planetary boundary layer, or of how to model it, he is 
going to be disappointed. The atmospheric boundary layer is a region in which 
moist (and dry) convection is important, and which undergoes large diurnal 
variations. The oceanic boundary layer is a region which is better mixed than the 
region below, which is strongly affected by storms, and which changes a great 
deal seasonally. Yet buoyancy and time-dependent effects are given’very little 
space in the book. The author states his policy on this matter in the preface: 

‘It is recognized that almost all planetary boundary layers are diabatic to  
some degree. Thus, practical application demands consideration of the 
thermal effects. In fact, it is apparent that the average planetary boundary 
layer is also time dependent. There are no analytic solutions incorporating all 
aspects of the observed flows. The boundary layer problem has been attacked 
from three fairly independent viewpoints : the dynamic flow problem for the 
neutral layer ; the thermal convection problem ; and the numerical integra- 
tion of the complete equations. There is a large quantity of literature on 
the first two topics, and a rapidly growing amount in the third category. 
Mastery of the planetary boundary layer problem will require study of all 
three segments. 

This text presents the first approach. A presentation devoted to analytical 
treatments must emphasize the dynamic flow (as contrasted to the con- 
vective flow) as it emerges from the neutrally stratified solutions. It is felt 
that the methods presented herein have didactic value which is indispensable 
to an understanding of the planetary boundary layer. Analytic solutions, 
and hence the neutrally stratified case, provide invaluable touchstones for 
an eventual development of the diabatic problem. 

This text is written from the geophysical - primarily meteorological - 
point of view.’ 

What the book does do is to introduce ideas used for modelling the mean 
velocity profile in the atmospheric boundary layer (56 pages, chapters 4-8) and 
also the large eddies or secondary flow (26 pages, chapters 9 and 10). The arrange- 

BROWN. Hilger, 1974. 148 pp. 28.00. 



Reviews 307 

ment of the material is clear and the account readable. Detailed mathematics is 
avoided by simply describing the ‘analytical methods ’ and presenting relevant 
equations. A summary of the material covered is given below. 

After three introductory chapters, the classical Ekman solution is presented 
(chapter 4) as a constant eddy viscosity solution of the equations. Chapter 5 is 
about the surface layer. The ideas behind the logarithmic velocity profile are 
introduced and the Monin-Oboukhov similarity theory about thermal effects is 
presented, together with empirical fits to the similarity profiles. The next three 
chapters, on the other hand, are about modelling the complete boundary layer 
in neutral conditions. Chapter 7 is about the appropriate similarity solutions 
while chapter S is about solutions for prescribed piecewise continuous variations 
of eddy viscoscity with height. Chapter 6 is really about the limiting case of one 
of these solutions but this is obscured by a misguided appeal to asymptotic 
matching theory. Chapters 9 and 10 may be considered an attempt to model the 
large eddies in the planetary boundary layer and to explain associated cloud 
patterns (some satellite pictures are included). The basis of this modelling is the 
stability theory for a classical Ekman layer in which there may be a uniform 
temperature gradient. This gives the eddy profiles and another condition is used 
to determine amplitudes. The subject is one to which the author of the book has 
made a considerable contribution himself. Finally (chapters- 11 and 12), a brief 
allusion is made to thermal and time-dependent effects. 

Even within the limited scope of the book, there is a lot of relevant work which 
has not been mentioned, such as the attempts to close the equations by methods 
other than prescribing an eddy viscosity distribution or by explicit inclusion of 
large eddies. Perhaps the book mill be of most use to people who want a short, 
well laid-out, readable introduction to concepts and methods used in modelling 
the velocity profile in the atmosphere. A. E. GILL 


